Chromatin domain boundary element search tool for Drosophila
نویسندگان
چکیده
Chromatin domain boundary elements prevent inappropriate interaction between distant or closely spaced regulatory elements and restrict enhancers and silencers to correct target promoters. In spite of having such a general role and expected frequent occurrence genome wide, there is no DNA sequence analysis based tool to identify boundary elements. Here, we report chromatin domain Boundary Element Search Tool (cdBEST), to identify boundary elements. cdBEST uses known recognition sequences of boundary interacting proteins and looks for 'motif clusters'. Using cdBEST, we identified boundary sequences across 12 Drosophila species. Of the 4576 boundary sequences identified in Drosophila melanogaster genome, >170 sequences are repetitive in nature and have sequence homology to transposable elements. Analysis of such sequences across 12 Drosophila genomes showed that the occurrence of repetitive sequences in the context of boundaries is a common feature of drosophilids. We use a variety of genome organization criteria and also experimental test on a subset of the cdBEST boundaries in an enhancer-blocking assay and show that 80% of them indeed function as boundaries in vivo. These observations highlight the role of cdBEST in better understanding of chromatin domain boundaries in Drosophila and setting the stage for comparative analysis of boundaries across closely related species.
منابع مشابه
A BEAF dependent chromatin domain boundary separates myoglianin and eyeless genes of Drosophila melanogaster
Precise transcriptional control is dependent on specific interactions of a number of regulatory elements such as promoters, enhancers and silencers. Several studies indicate that the genome in higher eukaryotes is divided into chromatin domains with functional autonomy. Chromatin domain boundaries are a class of regulatory elements that restrict enhancers to interact with appropriate promoters ...
متن کاملA functionally conserved boundary element from the mouse HoxD locus requires GAGA factor in Drosophila.
Hox genes are necessary for proper morphogenesis and organization of various body structures along the anterior-posterior body axis. These genes exist in clusters and their expression pattern follows spatial and temporal co-linearity with respect to their genomic organization. This colinearity is conserved during evolution and is thought to be constrained by the regulatory mechanisms that invol...
متن کاملDissection of open chromatin domain formation by site-specific recombination in Drosophila.
Drosophila polytene interphase chromosomes provide an ideal test system to study the rules that define the structure of chromatin domains. We established a transgenic condensed chromatin domain cassette for the insertion of large pieces of DNA by site-specific recombination. Insertion of this cassette into open chromatin generated a condensed domain, visible as an extra band on polytene chromos...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملThe Drosophila boundary element-associated factors BEAF-32A and BEAF-32B affect chromatin structure.
Binding sites for the Drosophila boundary element-associated factors BEAF-32A and -32B are required for the insulator activity of the scs' insulator. BEAF binds to hundreds of sites on polytene chromosomes, indicating that BEAF-utilizing insulators are an important class in Drosophila. To gain insight into the role of BEAF in flies, we designed a transgene encoding a dominant-negative form of B...
متن کامل